- Home
- Standard 11
- Mathematics
$(2 -x^2)$ અને $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$ ના ગુણાકારમાં $x^2$ નો સહગુણક મેળવો.
$106$
$107$
$155$
$108$
Solution
$\text { Let } a=\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)$
$\therefore $ Coefficient of $x^{2}$ in the expansion of the product
$\left(2-x^{2}\right)\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)$
$=2\left(\text { Coefficient of } x^{2} \text { in a }\right)-1$ (Constant of expansion)
In the expansion of
$\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)$
Constant $=1+1=2$
Coefficient of $x^{2}=$
[Coefficient of $x^2$ in ${(^6}{C_0}{(1 + 2x)^6}{(3{x^2})^0}$ ] $+$ [Coefficient of $x^2$ in ${(^6}{C_1}{(1 + 2x)^5}{(3{x^2})^1}$ ] $-$ ${[^6}{C_1}(4{x^2})]$
$=60+6 \times 3-24=54$
$\therefore \quad$ The coefficient of $x^{2}$ in $\left(2-x^{2}\right)$
${\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)}$
${=2 \times 54-1(2)=108-2=106}$